都来读小说网

手机浏览器扫描二维码访问

第五十七章 投影几何学(第1页)

它的某些概念早在古希腊时期就曾经引起一些学者的注意。

基于绘图学和建筑学的需要,古希腊几何学家就开始研究透视法,也就是投影和截影。

早在公元前200年左右,阿波罗尼奥斯说:“我就曾把二次曲线作为正圆锥面的截线来研究。”

在4世纪帕普斯的着作中,出现了帕普斯说:“我发现了帕普斯定理。”

欧洲文艺复兴时期透视学的兴起,给这门几何学的产生和成长准备了充分的条件。

在文艺复兴时期,人们在绘画和建筑艺术方面非常注意和大力研究如何在平面上表现实物的图形。那时候,人们发现,一个画家要把一个事物画在一块画布上就好比是用自己的眼睛当作投影中心,把实物的影子影射到画布上去,然后再描绘出来。在这个过程中,被描绘下来的像中的各个元素的相对大小和位置关系,有的变化了,有的却保持不变。这样就促使了数学家对图形在中心投影下的性质进行研究,因而就逐渐产生了许多过去没有的新的概念和理论,形成了射影几何这门学科。

在17世纪初期,开普勒说:“我最早引进了无穷远点概念。”

十七世纪,当笛卡儿和费尔马创立的解析几何问世的时候,还有一门几何学同时出现在人们的面前。这门几何学和画图有很密切的关系。

迪沙格是一个自学成才的数学家,他年轻的时候当过陆军军官,后来钻研工程技术,成了一名工程师和建筑师,他很不赞成为理论而搞理论,决心用新的方法来证明圆锥曲线的定理。

1639年,迪沙格说:“我出版了主要着作《试论圆锥曲线和平面的相交所得结果的初稿》,书中他引入了许多几何学的新概念。他的朋友笛卡尔、帕斯卡、费尔马都很推崇他的着作,费尔马甚至认为他是圆锥曲线理论的真正奠基人。”

迪沙格说:“在我的着作中,把直线看作是具有无穷大半径的圆,而曲线的切线被看作是割线的极限,这些概念都是射影几何学的基础。用我的名字命名的迪沙格定理,“如果两个三角形对应顶点连线共点,那么对应边的交点共线,反之也成立”,就是射影几何的基本定理。”

1641年,帕斯卡说:“我发现了一条定理,就是内接于二次曲线的六边形的三双对边的交点共线。”

这条定理叫做帕斯卡六边形定理,也是射影几何学中的一条重要定理。

1648年,亚伯拉罕?博斯出版了一本着作,其中包含了着名的“笛沙格定理”:当两个三角形是透视时,则其对应边的交点共线。

1658年,帕斯卡写了《圆锥曲线论》一书,书中很多定理都是射影几何方面的内容。迪沙格和他是朋友,曾经敦促他搞透视学方面的研究,并且建议他要把圆锥曲线的许多性质简化成少数几个基本命题作为目标。帕斯卡接受了这些建议。后来他写了许多有关射影几何方面的小册子。

不过迪沙格和帕斯卡的这些定理,只涉及关联性质而不涉及度量性质(长度、角度、面积)。但他们在证明中却用到了长度概念,而不是用严格的射影方法,他们也没有意识到,自己的研究方向会导致产生一个新的几何体系射影几何。他们所用的是综合法,随着解析几何和微积分的创立,综合法让位于解析法,射影几何的探讨也中断了。

射影几何的主要奠基人是19世纪的彭赛列。他是画法几何的创始人蒙日的学生。蒙日带动了他的许多学生用综合法研究几何。

由于迪沙格和帕斯卡等的工作被长期忽视了,前人的许多工作他们不了解,不得不重新再做。

施泰纳说:“我研究了利用简单图形产生较复杂图形的方法,线素二次曲线概念也是我引进的。

施陶特说:“我为了摆脱坐标系对度量概念的依赖,我通过几何作图来建立直线上的点坐标系,进而使交比也不依赖于长度概念。由于忽视了连续公理的必要性,我建立坐标系的做法还不完善,但却迈出了决定性的一步。”

另—方面,运用解析法来研究射影几何也有长足进展。

莫比乌斯说:“我创建一种齐次坐标系,把变换分为全等,相似,仿射,直射等类型,给出线束中四条线交比的度量公式等。”

接着,普吕克说:“我引进丁另一种齐次坐标系,得到了平面上无穷远线的方程,无穷远圆点的坐标。我还引进了线坐标概念,于是从代数观点就自然得到了对偶原理,并得到了关于一般线素曲线的一些概念。”

在19世纪前半叶的几何研究中,综合法和解析法的争论异常激烈;有些数学家完全否定综合法,认为它没有前途,而一些几何学家,如沙勒,施图迪和施泰纳等,则坚持用综合法而排斥解析法。还有一些人,如彭赛列,虽然承认综合法有其局限性,在研究过程中也难免借助于代数,但在着作中总是用综合法来论证。他们的努力使综合射影几何形成一个优美的体系,而且用综合法也确实形象鲜明,有些问题论证

882年帕施说:“我建成第一个严格的射影几何演绎体系。”

射影几何学的发展和其他数学分支的发展有密切的关系,特别是“群”的概念产生以后,也被引进了射影几何学,对这门几何学的研究起了促进作用。

克莱因说:“把各种几何和变换群相联系。”

克莱因说:“我在埃尔朗根纲领中提出了这个观点,并把几种经典几何看作射影几何的子几何,使这些几何之间的关系变得十分明朗。”

这个纲领产生了巨大影响。但有些几何,如黎曼几何,不能纳入这个分类法。后来嘉当等在拓广几何分类的方法中作出了新的贡献。

喜欢数学心请大家收藏:()数学心

枭鸢  攻略对象变成室友后,他不对劲  还是修仙吧  神魔剑玄录  新搬来的邻居  死神不来了  怪物崽崽和他的怪物监护人  我在死亡副本当管理员  小仓鼠今天有猫了吗  君为客  撩惹疯批顶E,笨蛋少爷他逃了  末世后我成了疯批alpha们的安抚剂  穿到虫族和军雌相亲  我真没想在过去的年代当学霸  杀了那个妖鬼  第三十年明月夜  夸夸我的神探祖父穿越爹  上流假象  兽世养山君[种田]  迷津蝴蝶  

热门小说推荐
灵能复苏:我获得了不死之身

灵能复苏:我获得了不死之身

从三十八亿年前的竞赛场起跑,生命开始了角逐之旅。人类经历无数兴衰演化,才最终确立了万物灵长的地位。然而,灵能复苏,凶兽崛起,将人类的霸权冲击得七零八落。更有机械之乱,给人类留下深刻教训。人类的霸主地位从此衰落。但是,我们怎能忘记,曾经的荣耀?终有一天,要将战旗投掷向天空海洋,以及每一寸土地,重夺海陆空三重霸权,让人类再次伟大。如果您喜欢灵能复苏我获得了不死之身,别忘记分享给朋友...

大宋蹴鞠传

大宋蹴鞠传

关于大宋蹴鞠传编一部大宋蹴鞠连续剧,看我一本正经地胡说八道!...

玩命挑战

玩命挑战

主播,还是观众?如果选择成为主播,您将会参与到我们为期三天的直播游戏节目之中,成为万众瞩目的明星!完成全部十项任务,拿到总决赛冠军,奖金总额高达一百万元!年度奖金高达一亿元!给你一个小目标,你今年就能完成它!如果选择成为观众,您可以投票决定主播将要挑战的任务!甚至亲自为主播量身打造各种任务!如果您喜欢玩命挑战,别忘记分享给朋友...

全球诸天时代

全球诸天时代

灵气复苏地球上涌现一个个异世界通道。每个世界内都存在多种不同属性的‘元能!’为‘治百病延寿元开穴窍练肉体凝灵根化妖形聚神通’元能种类无数人体可以无限融合,直至造化全能!而一年后。江苍有幸得到异世界的进入方法,却被早期‘元能者’杀死。只是当他再次睁开双眼,却发现自己回到了异世界刚开启的时间而这个时间存在着开启后,却短瞬消失的第一个世界第一颗元能如果您喜欢全球诸天时代,别忘记分享给朋友...

反派又在被迫万人迷

反派又在被迫万人迷

别人穿越都正正经经,为什么他穿越就变成了在武功遍地的古代进行修仙行为的前魔教教主?老天,没有走错剧场吧,为什么给一个深井冰人设的剧本啊!唉,只能维持着冷血无情的大反派人设,期望着可以隐居山林,最...

掠夺两界

掠夺两界

我叫南木,两个空间的主宰者。南木格言老子曰天地不仁以万物为刍狗。掠夺异界文明面对机甲战士兽化战士符法师变种人僵尸荒兽变异怪兽异星人等等南木说打劫!征服原界文明面对商业寡头,南木说我能用黄金铺满你所能看到的地方!面对工业巨头,南木说看过漫威吗?托尼斯塔克玩的是哥剩下的东西。面对能源霸主,南木说见过一张卡片,驱动的坦克吗?那如果驱动的是飞船呢?面对修者超能者,南木说来呀!正面钢呀!面对两界的女人南木冷静些!今天名额满了。孟子曰有无相生。(非无脑爽文,逻辑科幻,古风描写,不爽你找我)Q群109576670如果您喜欢掠夺两界,别忘记分享给朋友...

每日热搜小说推荐